lⁿ_p SUPERSPACES OF SPANS OF INDEPENDENT RANDOM VARIABLES

BY

A. ARIAS[†]

Department of Mathematics, Texas A&M University, College Station, TX 77843, USA

ABSTRACT

We show that for $1 \le p < \infty$, $p \ne 2$, if $\varepsilon > 0$ is small enough and $X \le L_p$ is the span of *n* independent Rademacher functions or *n* independent Gaussian random variables, then any superspace Y of X satisfying $d(Y, L_p^m) \le 1 + \varepsilon$ has dimension larger than r^n , where $r = r(\varepsilon, p) > 1$.

1. Introduction

In this paper we investigate a quantitative aspect of the local \mathscr{L}_p -structure of L_p . The problem we consider is:

(\mathscr{L}) Given a subspace X of L_p , dim X = n, and $\varepsilon > 0$, estimate the smallest $m = m_p(X, \varepsilon)$ such that there is a subspace Y of L_p with $X \subseteq Y$ and $d(Y, l_p^m) \leq 1 + \varepsilon$. In particular, estimate $m_p(n, \varepsilon) = \sup\{m_p(X, \varepsilon) : \dim X = n\}$.

The concept was introduced by Pelczynski and Rosenthal [PR], who proved that $m_p(n, \varepsilon)$ is finite. In the same paper there is an argument, due to Kwapien, that $m_p(n, \varepsilon)$ is of order no larger than $(n/\varepsilon)^{Cn}$ for some constant C. More precise estimates were given by Figiel, Johnson and Schechtman [FJS], who proved that "exponential of n" is the right order of $m_{\infty}(n, \varepsilon)$ and for "natural" *n*-dimensional Euclidean subspaces X of $L_1, m_1(X, \varepsilon) \ge r^n$, where $r = r(\varepsilon) > 1$ is independent of *n* and $\varepsilon > 0$ is arbitrary.

In the present paper we prove that if e > 0 is small enough, and X is the

Supported in part by NSF DMS-85 00764.

[†] This forms part of the author's doctoral dissertation prepared at Texas A&M University under the direction of Professor W. B. Johnson.

Received December 3, 1987 and in revised form May 2, 1988

subspace of L_p spanned by *n* independent Rademacher functions or by *n* independent Gaussian random variables, then $m_p(X, \varepsilon) \ge r^n$ where $r = r(\varepsilon, p) > 1$. More generally.

THEOREM 1.1. Let $1 \le p < \infty$, $p \ne 2$. For every $\eta > 0$ and $0 \le \gamma < \frac{1}{2}$ there exists $\varepsilon_p = \varepsilon_p(\eta, \gamma, p) > 0$ such that if $X_n = \operatorname{span}\{g_1, \ldots, g_n\}$ where $||g_i||_p = 1, P[|g_i| < \eta] \le \gamma$ for $i = 1, 2, \ldots, n$ and the sgn g_i 's are independent identically distributed (i.i.d.) random variables taking values 1 and -1 with probability $\frac{1}{2}$; and $0 < \varepsilon < \varepsilon_p$, then we can find $r = r(\varepsilon, \eta, \gamma, p) > 1$ and such that $m_p(X_n, \varepsilon) \ge r^n$.

REMARKS. (1) Theorem 1.1 is not true for arbitrarily large $\varepsilon > 0$ and p > 1. Johnson and Schechtman proved in [JS] that for ε large enough and for g_i independent random variables, $m_p(X_n, \varepsilon)$ satisfies a polynomial upper estimate. It would be interesting to see if $\lim_{p \to 1} \varepsilon_p = \infty$.

(2) We can eliminate the restriction $P[g_i = 0] = 0$ for i = 1, ..., n of Theorem 1.1 by requiring: $P[|g_i| < \eta] \le \gamma < \frac{1}{3}$ (instead of $\gamma < \frac{1}{2}$) for i = 1, ..., n and g_i 's are independent symmetric random variables. The proof goes essentially the same way.

If the g_i 's are independent symmetric random variables, we can use Kanter's inequality (see [AG] p. 112),

(*)
$$P\left[\left|\sum_{i=1}^{k} g_{i}\right| < \eta\right] \leq \frac{\frac{3}{2}}{\left(1 + \sum_{i=1}^{k} P[|g_{i}| \geq \eta]\right)^{1/2}},$$

to prove:

COROLLARY 1.2. Let $1 \le p < \infty$, $p \ne 2$. For every $\eta > 0$ and $0 \le \gamma < 1$ there exists $\varepsilon_p = \varepsilon_p(\eta, \gamma, p) > 0$ such that if $X_n = \operatorname{span}\{f_1, \ldots, f_n\}$ where the f_i 's are normalized independent symmetric random variables satisfying $P[|f_i| < \eta] \le \gamma$ for $i = 1, 2, \ldots, n$; and $0 < \varepsilon < \varepsilon_p$, then we can find $r = r(\varepsilon, \eta, \gamma, p) > 1$ such that $m_p(X_n, \varepsilon) \ge r^n$.

PROOF. Take k (independent of n) so that the right hand side of (*) is less than $\frac{1}{3}$. Let

$$g_i = \sum_{j=(i-1)k-1}^{ik} f_j / \left\| \sum_{j=(i-1)k-1}^{ik} f_j \right\|, \quad i = 1, \dots, [n/k] \text{ and } \eta' = \eta/k.$$

Then span $\{g_i\}_{i=1}^{[n/k]}$ satisfies the hypothesis of Remark 2 and the proof follows.

Theorem 1.1 answers a question raised in [FJS], and gives a variety of subspaces of L_p for which $m_p(X, \varepsilon)$ satisfies an "exponential lower bound". The remaining main problem is to see it there is a similar exponential behavior for the uniform approximation property (or uniform projection approximation property) for L_p , $1 \le p \ne 2 < \infty$. It was shown in [FJS] that this is the case for p = 1.

It also remains open whether $m_p(n, \varepsilon)$ admits an exponential upper estimate; or, at least, when X_n is the span of *n* i.i.d. symmetric random variables. Figiel [F] proved that this is correct if X_n is the span of *n* i.i.d. Gaussian random variables and p = 1.

2. Proof of Theorem 1.1

The main tool for the proof is:

THEOREM 2.1 (Dor-Schechtman) [D], [S]. Let $1 \le p < \infty$, $p \ne 2$. There exists a function $d(\varepsilon)$ such that $d(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$ and, if f_1, \ldots, f_m are functions in $L_p[0, 1]$ which satisfy

(1)
$$(1-\varepsilon)\left(\sum_{i=1}^{m}|a_{i}|^{p}\right)^{1/p} \leq \left\|\sum_{i=1}^{m}a_{i}f_{i}\right\|_{p} \leq (1+\varepsilon)\left(\sum_{i=1}^{m}|a_{i}|^{p}\right)^{1/p}$$

for all scalars a_1, \ldots, a_m ; then there exists a partition A_1, \ldots, A_m of [0, 1] such that

(2)
$$\left\|\sum_{i=1}^{m} a_i f_{i|A_i^{\varepsilon}}\right\|_p \leq d(\varepsilon) \left(\sum_{i=1}^{m} |a_i|^p\right)^{1/p}$$

PROOF OF THEOREM 1.1. Take $Y \subseteq L_p[0, 1]$ such that $X_n \subset Y$ and $d(Y, l_p^m) \leq 1 + \varepsilon$, where $m = m_p(X_n, \varepsilon)$. Then we can find:

(i) f_1, \ldots, f_m in Y satisfying (1),

(ii) A partition A_1, \ldots, A_m of [0, 1] satisfying (2), and

(iii) some constants a_{ik} such that

$$g_k = \sum_{i=1}^m a_{ik} f_i$$
 for $k = 1, 2, ..., n$.

Using (2) and the fact that $||g_k||_p = 1$, we get

A. ARIAS

$$\left\|\sum_{i=1}^{m} a_{ik} f_{i|A_i}\right\|_p \leq \frac{d(\varepsilon)}{1-\varepsilon} \quad \text{for } k=1,\ldots,n.$$

If ε is small enough, we have that

$$g_k \approx \sum_{i=1}^m a_{ik} f_{i|A_i}.$$

Then, for "most" of the j = 1, ..., m and k = 1, ..., n; $a_{jk} f_{j|A_j}$ is a "good" approximation of $g_{k|A_j}$. Since $|g| \ge \eta$ in a set of big measure,

$$P[\omega \in A_j : \operatorname{sgn} g_k(\omega) \neq \operatorname{sgn} a_{jk} \operatorname{sgn} f_j(\omega)] \qquad (\operatorname{sgn} 0 = 1)$$

is a "reasonable" estimate of the measure of the set of all $\omega \in A_j$ such that $g_k(\omega)$ is "not close" to $a_{jk} f_j(\omega)$. (Notice that if $g_k = r_k$, the k th Rademacher function, then sgn $g_k(\omega) \neq$ sgn a_{jk} sgn $f_j(\omega)$ implies $|g_k(\omega) - a_{jk} f_j(\omega)| \ge 1$.)

The quantity we want to estimate is

$$q(n) = \frac{1}{n} \sum_{k=1}^{n} \left[\sum_{j=1}^{m} P[w \in A_j : \operatorname{sgn} g_k(\omega) \neq \operatorname{sgn} a_{jk} \operatorname{sgn} f_j(\omega)] \right].$$

It represents the average of the measure of the sets where g_k is "not close" to $\sum_{i=1}^{m} a_{ik} f_{i|A_i}$.

The idea of the proof is that, on the one hand, this quantity must be small since $g_k \approx \sum_{i=1}^n a_{ik} f_{i|A_i}$, and, on the other hand, if *m* is small relative to *n*, the independence of sgn g_k forces it to be large.

CLAIM 1.

$$q(n) \leq \left[\frac{d(\varepsilon)}{\eta(1-\varepsilon)}\right]^p + \gamma.$$

Set

$$b(\varepsilon) = \left[\frac{d(\varepsilon)}{\eta(1-\varepsilon)}\right]^{p} + \gamma + \varepsilon$$

and choose $\varepsilon_p > 0$ so that $b(\varepsilon_p) < \frac{1}{2}$.

CLAIM 2. Let h = h(n) be the smallest number satisfying

(3)
$$\frac{2m}{2^n}\left[\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{h}\right] \ge 1.$$

Then there exists $N \in \mathbb{Z}^+$ such that for $n \ge N$, we have

$$h/n \leq b(\varepsilon_p) - \varepsilon_p/2.$$

We postpone the proof of Claims 1 and 2 and finish the proof of Theorem 1.1. Taking a crude estimate of (3), we obtain

(4)
$$1 \leq n \frac{\binom{n}{h}}{2^n} m.$$

By Stirling's formula, there is a constant A > 0 such that

$$\frac{\binom{n}{h}}{2^n} \leq A \left[\frac{f(h/n)}{2} \right]^n,$$

where the function

$$f(x) = \frac{(1-x)^{x-1}}{x^x}$$

satisfies f(0) = 1, $f(\frac{1}{2}) = 2$ and f'(x) > 0 for 0 < x < 1/2. Since f is increasing for x > N we have that

Since f is increasing, for $n \ge N$ we have that

(5)
$$\frac{\binom{n}{h}}{2^n} \leq A \left[\frac{f(b(\varepsilon_p) - \varepsilon_p/2)}{2} \right]^n.$$

Set $r = 2/f(b(\varepsilon_p))$ (notice that r > 1).

Substituting (5) in (4), we see that *m* has to be at least of order r^n to compensate $\binom{n}{h}/2^n$. That is, we can find $N_1 \in \mathbb{Z}^+$ s.t.

$$m \ge r^n$$
 for every $n \ge N_1$.

REMARK. If $g_k = r_k$ for every k, and we take $\eta = 1$ and $\gamma = 0$; we have that $\lim_{\epsilon \to 0} b(\epsilon) = 0$. Then we get that

$$\liminf_{n} m^{1/n} \ge 2.$$

This follows from the fact that $\lim_{\epsilon \to 0} r(\epsilon) = 2$. Thus we recover the "right order" for the Rademacher case.

PROOF OF CLAIM 1. For any k = 1, ..., n we have

$$\begin{split} \left\| \sum_{i=1}^{m} a_{ik} f_{i|A_{i}} \right\|_{p}^{p} &\geq \eta^{p} P\left[\left| \sum_{i=1}^{m} a_{ik} f_{i|A_{i}|} \right| \geq \eta \right] \\ &\geq \eta^{p} P\left[\omega \in B_{k} : \left| \sum_{i=1}^{m} a_{ik} f_{i|A_{i}|} \right| \geq \eta \right] \quad \text{where } B_{k} = \left[|g_{k}| \geq \eta \right] \\ &= \eta^{p} \sum_{j=1}^{m} P[\omega \in B_{k} \cap A_{j} : |g_{k}(\omega) - a_{jk} f_{j}(\omega)| \geq \eta \right] \\ &\geq \eta^{p} \sum_{j=1}^{m} P[\omega \in B_{k} \cap A_{j} : \operatorname{sgn} g_{k}(\omega) \neq \operatorname{sgn} a_{jk} \operatorname{sgn} f_{j}(\omega)] \\ &\geq \eta^{p} \left[\sum_{j=1}^{m} P[\omega \in A_{j} : \operatorname{sgn} g_{k}(\omega) \neq \operatorname{sgn} a_{jk} \operatorname{sgn} f_{j}(\omega)] - P[|g_{k}| < \eta] \right]. \end{split}$$

Therefore,

$$\sum_{j=1}^{m} P[\omega \in A_j : \operatorname{sgn} g_k(\omega) \neq \operatorname{sgn} a_{jk} \operatorname{sgn} f_j(\omega)] \leq \frac{\left\| \sum_{i=1}^{m} a_{ik} f_{i|A_i^c} \right\|_p^p}{\eta^p} + P[|g_k| < \eta]$$
$$\leq \left[\frac{d(\varepsilon)}{\eta(1-\varepsilon)} \right]^p + \gamma,$$

and taking the average on k, we finish the proof.

PROOF OF CLAIM 2. We will identify [0,1] with $\{-1,1\}^N$ in such a way that sgn $g_k = r_k$ for k = 1, ..., n. Since we will be interested in counting the number of 1's of elements of $\{-1,1\}^N$ we will use the Bernoulli functions $d_k = (r_k + 1)/2$.

We want to define a function $\varphi : \{-1, 1\}^N \rightarrow \{-1, 1\}^N$ that will let us handle q(n) in an easier way (remember sgn 0 = 1). For $\omega \in A_j$, let

$$r_k(\varphi(\omega)) = -\operatorname{sgn} g_k(\omega)\operatorname{sgn} a_{jk}\operatorname{sgn} f_j(\omega)$$
 for $k = 1, ..., n$, and
 $r_k(\varphi(\omega)) = r_k(\omega)$ for $k = n + 1, n + 2, ...$

We can easily check that

$$P[\omega \in A_j : \operatorname{sgn} g_k(\omega) \neq \operatorname{sgn} a_{jk} \operatorname{sgn} f_j(\omega)] = \int_{A_j} d_k(\varphi(\omega)) d\omega.$$

Moreover, given ω_1 , ω_2 in A_j such that $\varphi(\omega_1) = \varphi(\omega_2)$, then

$$r_k(\omega_1) = r_k(\omega_2)$$
 for $k = n + 1, n + 2, ...$

and (remember, sgn $g_k = r_k$ for k = 1, ..., n) either

$$r_k(\omega_1) = r_k(\omega_2)$$
 for $k = 1, \ldots, n$,

or

$$r_k(\omega_1) = -r_k(\omega_2)$$
 for $k = 1, \ldots, n$.

Therefore

$$\operatorname{card}\{\omega \in A_j : \varphi(\omega) = \omega_0\} \leq 2 \quad \text{for all } \omega_0 \in \{-1, 1\}^{\mathbb{N}}.$$

Adding all the pieces together, we get

$$\sum_{j=1}^{m} P[\omega \in A_j : \operatorname{sgn} g_k(\omega) \neq \operatorname{sgn} a_{jk} \operatorname{sgn} f_j(\omega)] = \int_0^1 d_k(\varphi(\omega)) d\omega$$

and card{ $\omega \in \{-1, 1\}^{N}$: $\varphi(\omega) = \omega_{0}\} \leq 2m$ for every $\omega_{0} \in \{-1, 1\}^{N}$. We want to estimate from below the quantity

$$\frac{1}{n}\int_0^1\left[\sum_{k=1}^n d_k(\varphi(\omega))\right]d\omega.$$

We have that

$$\int_0^1 \left[\sum_{k=1}^n d_k(\varphi(\omega))\right] d\omega = \sum_{i=1}^n iP\left[\omega:\sum_{k=1}^n d_k(\varphi(\omega))=i\right].$$

Let $S_i = [\omega : \sum_{k=1}^n d_k(\omega) = i]$. Since card $\varphi^{-1}(\omega) \leq 2m$ for every ω ,

$$S_i = \bigcup_{j=0}^{2m} [\omega \in S_i : \operatorname{card} \varphi^{-1}(\omega) = j].$$

Since φ only changes the first *n* coordinates of ω , it is 1-1 and measure preserving in each of "the 2^{*n*} basic dyadic intervals". Therefore

$$P\left[\omega:\sum_{k=1}^{n} d_{k}(\varphi(\omega)) = i\right] = \sum_{j=1}^{2m} j P[\omega \in S_{i}: \operatorname{card} \varphi^{-1}(\omega) = j]$$
$$\leq 2m \sum_{j=1}^{2m} P[\omega \in S_{i}: \operatorname{card} \varphi^{-1}(\omega) = j]$$
$$\leq 2m P(S_{i}) = 2m \frac{\binom{n}{i}}{2^{n}},$$

and we have equality only if card $\varphi^{-1}(\omega) = 2m$ a.e. in S_i . The worst case occurs when the image of φ is "concentrated" where there are few 1's. That is

$$\frac{1}{n} \int_0^1 \left[\sum_{k=1}^n d_k(\varphi(\omega)) \right] d\omega$$
(6)
$$\geq \frac{0}{n} \left[2m \frac{\binom{n}{0}}{2^n} \right] + \dots + \frac{(h-1)}{n} \left[2m \frac{\binom{n}{h-1}}{2^n} \right] + \frac{h}{n} \left[2m p_n \frac{\binom{n}{h}}{2^n} \right],$$

where h is the mininum number satisfying

$$\frac{2m}{2^n}\left[\binom{n}{0}+\cdots+\binom{n}{0}\right]\geq 1$$

and p_n is chosen so that

$$\frac{2m}{2^n}\left[\binom{n}{0}+\cdots+\binom{n}{h-1}+p_n\binom{n}{h}\right]=1.$$

We will show that the right hand side of (6) is essentially h/n, and this together with Claim 1 will finish the proof.

For any $0 < c < \frac{1}{2}$ such that $cn \in \mathbb{Z}^+$ we can easily check that

$$\binom{n}{cn-k} \leq \left(\frac{c}{1-c}\right)^k \binom{n}{cn}$$
 for $k = 1, \ldots, cn$.

Take 0 < a < 1 and let c = [ah]/n, then

$$\frac{\binom{n}{0} + \dots + \binom{n}{[a^2h]}}{\binom{n}{[ah]}} \leq \left(\frac{c}{1-c}\right)^{(1-a)ah} \left[1 + \frac{c}{1-c} + \dots\right]$$

which goes to zero as $n \to \infty$ ([x] is the integer part of x). Therefore

$$\frac{2m}{2^n}\left[\binom{n}{[a^2h]+1}+\cdots+\binom{n}{h-1}+p_n\binom{n}{h}\right]=1-e_a(n)$$

where $e_a(n) \rightarrow 0$ as $n \rightarrow \infty$. Hence, (6) implies that

$$\frac{1}{n}\int_0^1\left[\sum_{i=1}^n d_i(\varphi(\omega))\right]d\omega \ge \frac{[a^2h]}{n}(1-e_a(n)).$$

Claim (1) says (notice that $q(n) = (1/n) \int_0^1 \sum_{i=1}^n d_i(\varphi(\omega)) d\omega$)

$$\frac{1}{n}\int_0^1\left[\sum_{i=1}^n d_i(\varphi(\omega))\right]d\omega \leq b(\varepsilon_p) - \varepsilon_p.$$

Therefore

$$\frac{h}{n} \leq \frac{b(\varepsilon_p) - \varepsilon_p}{a^2(1 - e_a(n))}$$

and an appropriate selection of 0 < a < 1 and $N \in \mathbb{Z}^+$ gives us that

$$\frac{h}{n} \leq b(\varepsilon_p) - \varepsilon_p/2 \quad \text{whenever } n \geq N.$$

3. An application

We finish the paper with an application of Theorem 1.1 which was pointed out to us by G. Schechtman.

PROPOSITION. Let $1 \le p < 2$. For every $\varepsilon > 0$ there exist $\delta = \delta(\varepsilon, p) > 0$ and $r = r(\varepsilon, p) > 1$ such that for every $n \in \mathbb{Z}^+$ there is an n-dimensional subspace $X_n \subseteq L_p[0, 1]$ such that $d(X_n, l_p^n) \le \varepsilon$ and $m_p(X_n, \varepsilon) \ge r^n$.

PROOF. Let $\varepsilon > 0$ and $n \in \mathbb{Z}^+$. Take f_1, \ldots, f_n a sequence of 3-valued symmetric i.i.d. random variables such that $||f_i||_p = 1$ and supp f_i small enough to insure that

$$d(\operatorname{span}\{f_1,\ldots,f_n\},l_p^n) \leq 1 + \varepsilon/2.$$

Let r_1, \ldots, r_n be a copy of the Rademacher functions independent of the f_i 's. Set $g_k = \eta' f_k + \eta r_k$ where η, η' are chosen so that $||g_k||_p = 1$ and $\eta = \eta(\varepsilon) > 0$ small enough to have

$$d(X_n, l_p^n) \leq 1 + \varepsilon$$

where $X_n = \operatorname{span}\{g_1, \ldots, g_n\}$.

The result follows easily from Theorem 1.1.

REMARK. A weaker form is true also for $2 . Let <math>X_n = \text{span}\{r_k\}_{r=1}^n$. As in Remark 12 of [JS] we can find Y_n such that $X_n \subseteq Y_n \subseteq L_p$ with $d(Y_n, l_p^{\lim Y_n}) \leq K_p$ and dim $Y_n \leq K_p n^{p/2}$ (K_p is a constant depending only on p).

Since $m_p(X_n, \varepsilon) \ge r^n$ then we have that $m_p(Y_n, \varepsilon) \ge r^n \ge r_0(\dim Y_n)^{2/p}$ where $r_0 = r_0(\varepsilon, p) > 1$.

ACKNOWLEDGEMENT

The author wants to thank Professors E. Giné, W. B. Johnson, G. Schechtman and J. Zinn for helpful discussions concerning the preparations of this paper.

References

[AG] A. Araujo and E. Giné, The Central Limit Theorem for Real and Banach Valued Random Variables, John Wiley & Sons, New York, 1980.

[D] L. E. Dor, On projections in L₁, Ann. of Math. 102 (1975), 463-474.

[F] T. Figiel, The exponential estimate for local structure of Gaussian subspaces of L_p , to appear

[FJS] T. Figiel, W. B. Johnson and G. Schechtman, Factorization of natural embeddings of l_p^n into L_r , I, Studia Math., to appear.

[JS] W. B. Johnson and G. Schechtman, Sums of independent random variables in rearrangement invariant function spaces, to appear.

[PR] A. Pelczynski and H. P. Rosenthal, Localization techniques in L^p-spaces, Studia Math. 52 (1975), 263-289.

[S] G. Schechtman, Almost isometric L_p subspaces of $L_p(0, 1)$, J. London Math. Soc. 20 (1979), 516-528.