l; SUPERSPACES OF SPANS OF INDEPENDENT RANDOM VARIABLES

BY

A. ARIAS^t

Department of Mathematics, Texas A&M University, College Station, TX 77843, USA

ABSTRACT

We show that for $1 \leq p < \infty$, $p \neq 2$, if $\varepsilon > 0$ is small enough and $X \leq L_p$ is the span of n independent Rademacher functions or n independent Gaussian random variables, then any superspace Y of X satisfying $d(Y, L_n^m) \leq 1 + \varepsilon$ has dimension larger than r^n , where $r = r(\varepsilon, p) > 1$.

1. Introduction

In this paper we investigate a quantitative aspect of the local \mathscr{L}_p -structure of L_p . The problem we consider is:

(\mathcal{L}) Given a subspace X of L_p , dim $X = n$, and $\varepsilon > 0$, estimate the smallest $m = m_p(X, \varepsilon)$ such that there is a subspace Y of L_p with $X \subseteq Y$ and $d(Y, l_p^m) \leq$ $1 + \varepsilon$. In particular, estimate $m_p(n, \varepsilon) = \sup\{m_p(X, \varepsilon) : \dim X = n\}.$

The concept was introduced by Pelczynski and Rosenthal [PR], who proved that $m_p(n, \varepsilon)$ is finite. In the same paper there is an argument, due to Kwapien, that $m_p(n, \varepsilon)$ is of order no larger than $(n/\varepsilon)^{C_n}$ for some constant C. More precise estimates were given by Figiel, Johnson and Schechtman [FJS], who proved that "exponential of n " is the right order of $m_\infty(n, \varepsilon)$ and for "natural" *n*-dimensional Euclidean subspaces *X* of L_1 , $m_1(X, \varepsilon) \ge r^n$, where $r = r(\varepsilon) > 1$ is independent of *n* and $\varepsilon > 0$ is arbitrary.

In the present paper we prove that if $\varepsilon > 0$ is small enough, and X is the

Supported in part by NSF DMS-85 00764.

^{*} This forms part of the author's doctoral dissertation prepared at Texas A&M University under the direction of Professor W. B. Johnson.

Received December 3, 1987 and in revised form May 2, 1988

subspace of L_p spanned by *n* independent Rademacher functions or by *n* independent Gaussian random variables, then $m_p(X, \varepsilon) \ge r^n$ where $r =$ $r(\varepsilon, p) > 1$. More generally.

THEOREM 1.1. Let $1 \leq p < \infty$, $p \neq 2$. For every $n > 0$ and $0 \leq y < \frac{1}{2}$ *there exists* $\varepsilon_p = \varepsilon_p(\eta, \gamma, p) > 0$ *such that if* $X_n = \text{span}\{g_1, \ldots, g_n\}$ *where* $\|g_i\|_p = 1$, $P[\,|g_i| < \eta] \leq \gamma$ for $i = 1, 2, \ldots, n$ and the sgn g_i 's are independent *identically distributed* (i.i.d.) *random variables taking values 1 and - 1 with probability* $\frac{1}{2}$; and $0 < \varepsilon < \varepsilon_n$, then we can find $r = r(\varepsilon, \eta, \gamma, p) > 1$ and such *that* $m_n(X_n, \varepsilon) \geq r^n$.

REMARKS. (1) Theorem 1.1 is not true for arbitrarily large $\varepsilon > 0$ and $p > 1$. Johnson and Schechtman proved in [JS] that for ε large enough and for g_i independent random variables, $m_p(X_n, \varepsilon)$ satisfies a polynomial upper estimate. It would be interesting to see if $\lim_{p\to 1} \varepsilon_p = \infty$.

(2) We can eliminate the restriction $P[g_i = 0] = 0$ *for* $i = 1, ..., n$ of Theorem 1.1 by requiring: $P[|g_i| < \eta] \le \gamma < \frac{1}{3}$ (instead of $\gamma < \frac{1}{2}$) for $i = 1, \ldots, n$ and g_i 's are independent symmetric random variables. The proof goes essentially the same way.

If the g_i 's are independent symmetric random variables, we can use Kanter's inequality (see [AG] p. 112),

$$
F\left[\left|\sum_{i=1}^k g_i\right| < \eta\right] \leq \frac{\frac{3}{2}}{\left(1 + \sum_{i=1}^k P[|g_i| \geq \eta]\right)^{1/2}} \;,
$$

to prove:

COROLLARY 1.2. Let $1 \leq p < \infty$, $p \neq 2$. For every $p > 0$ and $0 \leq y < 1$ *there exists* $\varepsilon_p = \varepsilon_p(\eta, \gamma, p) > 0$ *such that if* $X_n = \text{span}\{f_1, \ldots, f_n\}$ *where the* f_i 's *are normalized independent symmetric random variables satisfying* $P[|f_i| < \eta] \leq \gamma$ for $i = 1, 2, ..., n$; and $0 < \varepsilon < \varepsilon_n$, then we can find $r =$ $r(\varepsilon, \eta, \gamma, p)$ > 1 such that $m_p(X_n, \varepsilon) \ge r^n$.

PROOF. Take k (independent of n) so that the right hand side of $(*)$ is less than $\frac{1}{3}$. Let

$$
g_i = \sum_{j=(i-1)k-1}^{ik} f_j / \left\| \sum_{j=(i-1)k-1}^{ik} f_j \right\|, \quad i = 1, \ldots, [n/k] \text{ and } \eta' = \eta/k.
$$

Then span ${g_i}_{i=1}^{[n/k]}$ satisfies the hypothesis of Remark 2 and the proof follows.

Theorem 1.1 answers a question raised in [FJS], and gives a variety of subspaces of L_p for which $m_p(X, \varepsilon)$ satisfies an "exponential lower bound". The remaining main problem is to see it there is a similar exponential behavior for the uniform approximation property (or uniform projection approximation property) for L_p , $1 \leq p \neq 2 < \infty$. It was shown in [FJS] that this is the case for $p=1$.

It also remains open whether $m_p(n, \varepsilon)$ admits an exponential upper estimate; or, at least, when X_n is the span of n i.i.d. symmetric random variables. Figiel [F] proved that this is correct if X_n is the span of n i.i.d. Gaussian random variables and $p = 1$.

2. **Proof of Theorem** 1.1

The main tool for the proof is:

THEOREM 2.1 (Dor-Schechtman) [D], [S]. *Let* $1 \leq p < \infty$, $p \neq 2$. *There exists a function d(e) such that* $d(\varepsilon) \rightarrow 0$ *as* $\varepsilon \rightarrow 0$ *and, if* f_1, \ldots, f_m *are functions in* $L_p[0, 1]$ *which satisfy*

$$
(1) \qquad (1-\varepsilon)\left(\sum_{i=1}^m |a_i|^p\right)^{1/p} \leq \left\|\sum_{i=1}^m a_i f_i\right\|_p \leq (1+\varepsilon)\left(\sum_{i=1}^m |a_i|^p\right)^{1/p}
$$

for all scalars a_1, \ldots, a_m *; then there exists a partition* A_1, \ldots, A_m *of* [0, 1] *such that*

(2)
$$
\left\| \sum_{i=1}^m a_i f_{i|A_i^c} \right\|_p \leq d(\varepsilon) \left(\sum_{i=1}^m |a_i|^p \right)^{1/p}.
$$

PROOF OF THEOREM 1.1. Take $Y \subseteq L_p[0, 1]$ such that $X_n \subset Y$ and $d(Y, l_p^m) \leq 1 + \varepsilon$, where $m = m_p(X_n, \varepsilon)$. Then we can find:

(i) f_1, \ldots, f_m in Y satisfying (1),

- (ii) A partition A_1, \ldots, A_m of [0, 1] satisfying (2), and
- (iii) some constants a_{ik} such that

$$
g_k=\sum_{i=1}^m a_{ik}f_i \quad \text{for } k=1,2,\ldots,n.
$$

Using (2) and the fact that $||g_k||_p = 1$, we get

$$
\left\| \sum_{i=1}^m a_{ik} f_{i|A_i^c} \right\|_p \leq \frac{d(\varepsilon)}{1-\varepsilon} \quad \text{for } k=1,\ldots,n.
$$

If ε is small enough, we have that

$$
g_k \approx \sum_{i=1}^m a_{ik} f_{i|A_i}.
$$

Then, for "most" of the $j = 1, \ldots, m$ and $k = 1, \ldots, n$; $a_{jk} f_{j|A_j}$ is a "good" approximation of $g_{k|A_i}$. Since $|g| \ge \eta$ in a set of big measure,

$$
P[\omega \in A_j : \operatorname{sgn} g_k(\omega) \neq \operatorname{sgn} a_{jk} \operatorname{sgn} f_j(\omega)] \qquad (\operatorname{sgn} 0 = 1)
$$

is a "reasonable" estimate of the measure of the set of all $\omega \in A_i$ such that $g_k(\omega)$ Is "not close" to $a_{jk} f_j(\omega)$. (Notice that if $g_k = r_k$, the kth Rademacher function, then sgn $g_k(\omega) \neq$ sgn a_{ik} sgn $f_i(\omega)$ implies $|g_k(\omega) - a_{ik}f_i(\omega)| \geq 1.$)

The quantity we want to estimate is

$$
q(n) = \frac{1}{n} \sum_{k=1}^{n} \left[\sum_{j=1}^{m} P[w \in A_j : \operatorname{sgn} g_k(\omega) \neq \operatorname{sgn} a_{jk} \operatorname{sgn} f_j(\omega)] \right].
$$

It represents the average of the measure of the sets where g_k is "not close" to $\sum_{i=1}^m a_{ik} f_{i|A_i}$.

The idea of the proof is that, on the one hand, this quantity must be small since $g_k \approx \sum_{i=1}^n a_{ik} f_{i|A_i}$, and, on the other hand, if m is small relative to n, the independence of sgn g_k forces it to be large.

CLAIM 1.

$$
q(n) \leq \left[\frac{d(\varepsilon)}{\eta(1-\varepsilon)}\right]^{p} + \gamma.
$$

Set

$$
b(\varepsilon) = \left[\frac{d(\varepsilon)}{\eta(1-\varepsilon)}\right]^p + \gamma + \varepsilon
$$

and choose $\varepsilon_p > 0$ so that $b(\varepsilon_p) < \frac{1}{2}$.

CLAIM 2. Let $h = h(n)$ be the smallest number satisfying

(3)
$$
\frac{2m}{2^n}\left[\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{h}\right]\geq 1.
$$

Then there exists $N \in \mathbb{Z}^+$ such that for $n \geq N$, we have

$$
h/n \leq b(\varepsilon_p) - \varepsilon_p/2.
$$

We postpone the proof of Claims 1 and 2 and finish the proof of Theorem 1.1. Taking a crude estimate of (3) , we obtain

$$
(4) \hspace{1cm} 1 \leq n \frac{{n \choose h}}{2^n} \hspace{1mm} m.
$$

By Stirling's formula, there is a constant $A > 0$ such that

$$
\left(\frac{n}{h}\right)_{2^n} \leq A \left[\frac{f(h/n)}{2}\right]^n,
$$

where the function

$$
f(x) = \frac{(1-x)^{x-1}}{x^x}
$$

satisfies $f(0) = 1$, $f(\frac{1}{2}) = 2$ and $f'(x) > 0$ for $0 < x < 1/2$.

Since f is increasing, for $n \geq N$ we have that

(5)
$$
\frac{{\binom{n}{h}}}{2^n} \leq A \left[\frac{f(b(\varepsilon_p) - \varepsilon_p/2)}{2} \right]^n.
$$

Set $r = 2/f(b(\varepsilon_n))$ (notice that $r > 1$).

Substituting (5) in (4), we see that m has to be at least of order $rⁿ$ to compensate $\binom{n}{h}/2^n$. That is, we can find $N_1 \in \mathbb{Z}^+$ s.t.

$$
m \geq r^n \qquad \text{for every } n \geq N_1.
$$

REMARK. If $g_k = r_k$ for every k, and we take $\eta = 1$ and $\gamma = 0$; we have that $\lim_{\epsilon \to 0} b(\epsilon) = 0$. Then we get that

$$
\liminf_n m^{1/n} \geq 2.
$$

This follows from the fact that $\lim_{\epsilon \to 0} r(\epsilon) = 2$. Thus we recover the "right" order" for the Rademacher case.

PROOF OF CLAIM 1. For any $k = 1, \ldots, n$ we have

[]

$$
\left\| \sum_{i=1}^{m} a_{ik} f_{i|A_i^c} \right\|_p^p \geq \eta^p P\left[\left| \sum_{i=1}^{m} a_{ik} f_{i|A_i^c} \right| \geq \eta \right]
$$

\n
$$
\geq \eta^p P\left[\omega \in B_k : \left| \sum_{i=1}^{m} a_{ik} f_{i|A_i^c} \right| \geq \eta \right] \quad \text{where } B_k = [\left| g_k \right| \geq \eta]
$$

\n
$$
= \eta^p \sum_{j=1}^{m} P\left[\omega \in B_k \cap A_j : \left| g_k(\omega) - a_{jk} f_j(\omega) \right| \geq \eta \right]
$$

\n
$$
\geq \eta^p \sum_{j=1}^{m} P\left[\omega \in B_k \cap A_j : \text{sgn } g_k(\omega) \neq \text{sgn } a_{jk} \text{sgn } f_j(\omega) \right]
$$

\n
$$
\geq \eta^p \left[\sum_{j=1}^{m} P\left[\omega \in A_j : \text{sgn } g_k(\omega) \neq \text{sgn } a_{jk} \text{sgn } f_j(\omega) \right] - P\left[\left| g_k \right| < \eta \right] \right].
$$

Therefore,

$$
\sum_{j=1}^{m} P[\omega \in A_j : \text{sgn } g_k(\omega) \neq \text{sgn } a_{jk} \text{ sgn } f_j(\omega)] \leq \frac{\left\| \sum_{i=1}^{m} a_{ik} f_{i|A_i^c} \right\|_p^p}{\eta^p} + P[|g_k| < \eta]
$$
\n
$$
\leq \left[\frac{d(\varepsilon)}{\eta(1-\varepsilon)} \right]^p + \gamma,
$$

and taking the average on k , we finish the proof.

PROOF OF CLAIM 2. We will identify [0,1] with $\{-1, 1\}^N$ in such a way that sgn $g_k = r_k$ for $k = 1, ..., n$. Since we will be interested in counting the number of 1's of elements of $\{-1, 1\}^N$ we will use the Bernoulli functions $d_k = (r_k + 1)/2$.

We want to define a funtion $\varphi : \{-1, 1\}^N \rightarrow \{-1, 1\}^N$ that will let us handle $q(n)$ in an easier way (remember sgn $0 = 1$). For $\omega \in A_i$, let

$$
r_k(\varphi(\omega)) = -\operatorname{sgn} g_k(\omega) \operatorname{sgn} a_{jk} \operatorname{sgn} f_j(\omega) \quad \text{for } k = 1, ..., n, \quad \text{and}
$$

$$
r_k(\varphi(\omega)) = r_k(\omega) \quad \text{for } k = n + 1, n + 2, ...
$$

We can easily check that

$$
P[\omega \in A_j : \operatorname{sgn} g_k(\omega) \neq \operatorname{sgn} a_{jk} \operatorname{sgn} f_j(\omega)] = \int_{A_j} d_k(\varphi(\omega))d\omega.
$$

Moreover, given ω_1 , ω_2 in A_i such that $\varphi(\omega_1) = \varphi(\omega_2)$, then

$$
r_k(\omega_1)=r_k(\omega_2) \qquad \text{for } k=n+1, n+2, \ldots
$$

and (remember, sgn $g_k = r_k$ for $k = 1, ..., n$) either

$$
r_k(\omega_1)=r_k(\omega_2) \qquad \text{for } k=1,\ldots,n,
$$

or

$$
r_k(\omega_1)=-r_k(\omega_2) \qquad \text{for } k=1,\ldots,n.
$$

Therefore

$$
\operatorname{card}\{\omega \in A_j : \varphi(\omega) = \omega_0\} \leq 2 \quad \text{for all } \omega_0 \in \{-1, 1\}^N.
$$

Adding all the pieces together, we get

$$
\sum_{j=1}^{m} P[\omega \in A_j : \text{sgn } g_k(\omega) \neq \text{sgn } a_{jk} \text{ sgn } f_j(\omega)] = \int_0^1 d_k(\varphi(\omega))d\omega
$$

and card $\{\omega \in \{-1, 1\}^N : \varphi(\omega) = \omega_0\} \leq 2m$ for every $\omega_0 \in \{-1, 1\}^N$. We want to estimate from below the quantity

$$
\frac{1}{n}\int_0^1\left[\sum_{k=1}^n d_k(\varphi(\omega))\right]d\omega.
$$

We have that

$$
\int_0^1 \left[\sum_{k=1}^n d_k(\varphi(\omega)) \right] d\omega = \sum_{i=1}^n i P \left[\omega : \sum_{k=1}^n d_k(\varphi(\omega)) = i \right].
$$

Let $S_i = [\omega : \sum_{k=1}^n d_k(\omega) = i]$. Since card $\varphi^{-1}(\omega) \leq 2m$ for every ω ,

$$
S_i = \bigcup_{j=0}^{2m} [\omega \in S_i : \text{card } \varphi^{-1}(\omega) = j].
$$

Since φ only changes the first *n* coordinates of ω , it is 1-1 and measure preserving in each of "the 2" basic dyadic intervals". Therefore

$$
P\left[\omega : \sum_{k=1}^{n} d_k(\varphi(\omega)) = i\right] = \sum_{j=1}^{2m} jP[\omega \in S_i : \text{card }\varphi^{-1}(\omega) = j]
$$

$$
\leq 2m \sum_{j=1}^{2m} P[\omega \in S_i : \text{card }\varphi^{-1}(\omega) = j]
$$

$$
\leq 2mP(S_i) = 2m \frac{\binom{n}{i}}{2^n},
$$

and we have equality only if card $\varphi^{-1}(\omega) = 2m$ a.e. in S_i. The worst case occurs when the image of φ is "concentrated" where there are few 1's. That is

$$
\frac{1}{n}\int_0^1\left[\sum_{k=1}^n d_k(\varphi(\omega))\right]d\omega
$$
\n(6)\n
$$
\geq \frac{0}{n}\left[\frac{n}{2m}\frac{\binom{n}{0}}{2^n}\right] + \dots + \frac{(h-1)}{n}\left[\frac{n}{2m}\frac{\binom{n}{h-1}}{2^n}\right] + \frac{h}{n}\left[\frac{n}{2m}\frac{\binom{n}{h}}{2^n}\right],
$$

where h is the mininum number satisfying

$$
\frac{2m}{2^n}\bigg[\binom{n}{0}+\cdots+\binom{n}{0}\bigg]\geq 1
$$

and p_n is chosen so that

$$
\frac{2m}{2^n}\bigg[\binom{n}{0}+\cdots+\binom{n}{h-1}+p_n\binom{n}{h}\bigg]=1.
$$

We will show that the right hand side of (6) is essentially *h/n,* and this together with Claim 1 will finish the proof.

For any $0 < c < \frac{1}{2}$ such that $cn \in \mathbb{Z}^+$ we can easily check that

$$
\binom{n}{cn-k}\leq \left(\frac{c}{1-c}\right)^k\binom{n}{cn} \quad \text{for } k=1,\ldots,cn.
$$

Take $0 < a < 1$ and let $c = \frac{a h}{n}$, then

$$
\frac{\binom{n}{0}+\cdots+\binom{n}{\lfloor a^{2}h\rfloor}}{\binom{n}{\lfloor ah\rfloor}}\leq \left(\frac{c}{1-c}\right)^{(1-a)ah}\left[1+\frac{c}{1-c}+\cdots\right]
$$

which goes to zero as $n \to \infty$ ([x] is the integer part of x). Therefore

$$
\frac{2m}{2^n}\left[\binom{n}{[a^2h]+1}+\cdots+\binom{n}{h-1}+p_n\binom{n}{h}\right]=1-e_a(n)
$$

where $e_a(n) \rightarrow 0$ as $n \rightarrow \infty$. Hence, (6) implies that

$$
\frac{1}{n}\int_0^1\left[\sum_{i=1}^n d_i(\varphi(\omega))\right]d\omega \geq \frac{[a^2h]}{n}(1-e_a(n)).
$$

Claim (1) says (notice that $q(n) = (1/n) \int_0^1 \sum_{i=1}^n d_i(\varphi(\omega))d\omega$)

$$
\frac{1}{n}\int_0^1\left[\sum_{i=1}^n d_i(\varphi(\omega))\right]d\omega \leq b(\varepsilon_p)-\varepsilon_p.
$$

Therefore

$$
\frac{h}{n} \leq \frac{b(\varepsilon_p)-\varepsilon_p}{a^2(1-e_a(n))}
$$

and an appropriate selection of $0 < a < 1$ and $N \in \mathbb{Z}^+$ gives us that

$$
\frac{h}{n} \leq b(\varepsilon_p) - \varepsilon_p/2 \quad \text{whenever } n \geq N.
$$

3. An application

We finish the paper with an application of Theorem 1.1 which was pointed out to us by G. Schechtman.

PROPOSITION. Let $1 \leq p < 2$. For every $\varepsilon > 0$ there exist $\delta = \delta(\varepsilon, p) > 0$ *and* $r = r(\varepsilon, p) > 1$ *such that for every* $n \in \mathbb{Z}^+$ *there is an n-dimensional subspace* $X_n \subseteq L_p[0, 1]$ *such that* $d(X_n, l_p^n) \leq \varepsilon$ *and* $m_p(X_n, \varepsilon) \geq r^n$.

PROOF. Let $\varepsilon > 0$ and $n \in \mathbb{Z}^+$. Take f_1, \ldots, f_n a sequence of 3-valued symmetric i.i.d. random variables such that $|| f_i ||_p = 1$ and supp f_i small enough to insure that

$$
d(\operatorname{span}\{f_1,\ldots,f_n\},l_p^n)\leq 1+\varepsilon/2.
$$

Let r_1, \ldots, r_n be a copy of the Rademacher functions independent of the f_i 's. Set $g_k = \eta' f_k + \eta r_k$ where η , η' are chosen so that $||g_k||_p = 1$ and $\eta = \eta(\varepsilon) > 0$ small enough to have

$$
d(X_n, l_p^n) \leq 1 + \varepsilon
$$

where $X_n = \text{span}\{g_1, \ldots, g_n\}.$

The result follows easily from Theorem 1.1.

REMARK. A weaker form is true also for $2 < p < \infty$. Let $X_n = \text{span}\{r_k\}_{k=1}^n$. As in Remark 12 of [JS] we can find Y_n such that $X_n \subseteq Y_n \subseteq L_p$ with $d(Y_n, l_p^{\text{lim } Y_n}) \leq K_p$ and dim $Y_n \leq K_p n^{p/2}$ (K_p is a constant depending only on p).

Since $m_p(X_n, \varepsilon) \ge r^n$ then we have that $m_p(Y_n, \varepsilon) \ge r^n \ge r_0(\text{dim } Y_n)^{2/p}$ where $r_0 = r_0(\varepsilon, p) > 1.$

ACKNOWLEDGEMENT

The author wants to thank Professors E. Gin6, W. B. Johnson, G. Schechtman and J. Zinn for helpful discussions concerning the preparations of this paper.

REFERENCES

[AG] A. Araujo and E. Giné, *The Central Limit Theorem for Real and Banach Valued Random Variables,* John Wiley & Sons, New York, 1980.

[D] L. E. Dor, *On projections in L*₁, Ann. of Math. **102** (1975), 463-474.

[F] T. Figiel, *The exponential estimate for local structure of Gaussian subspaces of Lp,* to appear

[FJS] T. Figiel, W. B. Johnson and G. Schechtrnan, *Factorization of natural embeddings ofl~ into L,, I,* Studia Math., to appear.

[JS] W. B. Johnson and G. Schechtman, *Sums of independent random variables in rearrangement in variant function spaces,* to appear.

[PR] A. Pelczynski and H. P. Rosenthal, *Localization techniques in LP-spaces,* Studia Math. 52 (1975), 263-289.

[S] G. Schechtman, *Almost isometric L_p subspaces of L_p*(0, 1), J. London Math. Soc. 20 (1979), 516-528.