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ABSTRACT 

We show that for I -< p < Qv, ~ ~ 2, ife > 0 is small enough and X < Lp is the 
span of n independent Rademacher functions or n independent Gaussian 
random variables, then any superspace Y of X satisfying d(Y, L~) ffi< 1 + e has 
dimension larger than r ~, where r = r(e, p)> 1. 

1. Introduction 

In this paper we investigate a quantitative aspect of  the local .Zp-structure of  

Lp. The problem we consider is: 

(.~o) Given a subspace X of Lp, dim X -- n, and e > 0, estimate the smallest 

m = mp(X, e) such that there is a subspace YofLp with X _ Yand d(Y ,  1~') < 
1 + e. In particular, estimate mp(n, e) = sup{mp(X, e) : dim X --- n }. 

The concept was introduced by Pelczynski and Rosenthal [PR], who proved 

that mp(n, e) is finite. In the same paper there is an argument, due to Kwapien, 

that mp(n, e) is of order no larger than (hie) c* for some constant C. More 

precise estimates were given by Figiel, Johnson and Schechtman [FJS], who 

proved that "exponential of  n" is the right order of m®(n, e) and for "natural" 

n-dimensional Euclidean subspaces X of  Lb  mt(X, e) > r n, wherer  = r(e) > 1 
is independent of  n and e > 0 is arbitrary. 

In the present paper we prove that if  e > 0 is small enough, and X is the 

* This forms part of the author's doctoral dissertation prepared at Texas A&M University under 
the direction of Professor W. B. Johnson. 
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subspace of  L o spanned by n independent  Rademacher functions or by n 
independent  Gaussian random variables, then m ~ ( X , e ) > r  ~ where r = 
r(e, p) > 1. More generally. 

THEOREM 1.1. Let  1 < p < ~ ,  p ~ 2. For every t 1 > 0 and  0 < 7 < ½ 
there exists e o = ep(yl, ~,, p )  > 0 such that i f  X~ = span{g~, . . . ,  g~} where 

II g, lip -- 1, P[ I g~ l < tl ] < 7 for  i = I, 2 , . . . ,  n and  the sgn g /s  are independent 

identically distributed (i.i.d.) random variables taking values 1 and  - 1 with 

probability ½; and 0 < e < ep, then we can f ind  r = r(e, ti , 7, P) > 1 and  such 

that mp(Xn, e) > r ~. 

REMARKS. (1) Theorem 1.1 is not true for arbitrarily large e > 0 and p > 1. 

Johnson and Schechtman proved in [JS] that for e large enough and for g~ 
independent  random variables, mo(X~,e)  satisfies a polynomial upper 

estimate. It would be interesting to see if lira o_ ~ ep -- ~ .  
(2) We can eliminate the restriction P[g~ = 0] = 0 for  i = 1, . . . .  n of 

Theorem 1.1 by requiring: P[Ig, l<~/]<7<~ (instead of  ~ , < ½ ) f o r  
i = 1, . . . .  n a n d g / s  are independent symmetr ic  random variables. The proof  
goes essentially the same way. 

If  the g~'s are independent  symmetric random variables, we can use Kanter's 
inequality (see [AG] p. 112), 

(* )  < _ -  < 

i 

3 

2 
, ' 

l +  Y, P[ig, l 
i--I 

to prove: 

COROLLARY 1.2. Let  1 < p < or, p ~ 2. For every tl > 0 and  0 < 7 < 1 

there exists ep -~ eo(~ l, ~,, p )  > 0 such that i f  X ,  ffi span{ f~ . . . .  , f~ } where t he f t s  

are normalized independent symmetr ic  random variables satisfying 

P[IfJl <~ / ]<~ '  for  i = 1 , 2 , . . . , n ;  and  0 < e < e  o, then we can f ind  r =  

r(e, t l, y, p )  > I such that mp(Xn, e) > r ~. 

PROOF. Take k (independent of n) so that the right hand side of  (.) is less 
than ~. Let 

g~ = ~ fj  , i l l  . . . .  , [ n / k ]  and t/'f~l/k. 
j - ( i - l ) k - t  / j - ( i - l ) k - I  
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Then span {g~ }!~1 satisfies the hypothesis of Remark 2 and the proof follows. 

Theorem 1.1 answers a question raised in [FJS], and gives a variety of 
subspaces of Lp for which rap(X, e) satisfies an "exponential lower bound". The 
remaining main problem is to see it there is a similar exponential behavior for 
the uniform approximation property (or uniform projection approximation 
property) for Lp, 1 _-< p ~: 2 < oo. It was shown in [FJS] that this is the case for 
p = l .  

It also remains open whether rap(n, e) admits an exponential upper esti- 
mate; or, at least, when At, is the span of n i.i.d, symmetric random variables. 
Figiel [F] proved that this is correct if X~ is the span of n i.i.d. Gaussian 
random variables and p = 1. 

2. Proof of Theorem 1.1 

The main tool for the proof is: 

THEOREM 2.1 (Dor-Schechtman) [D], [S]. Let 1 <-_ p < ~ ,  p ~ 2. There 
exists a function d(e ) such that d(t ) ~ 0 as t --, 0 and, i f  f~ . . . . .  fm are functions 
in Lp[0, 1] which satisfy 

(1) ( l - e )  la, I --< a~f~ _-<(l+e) Jail v 
i 1 i - - I  i 1 

for all scalars a l,. : . ,  am; then there exists a partition At, . . . .  A m of[0, 1] such 
that 

PROOV OV THEOREM 1.1. Take Y _ Lp[0, 1] such 
d(Y, l~') < 1 + e, where m = mp(X,,, e). Then we can find: 

(i) f~, . . . .  fm in Y satisfying (1), 
(ii) A partition A~, . . . ,  Am of [0, 1] satisfying (2), and 

(iii) some constants a~k such that 

m 

gk-- Y~ a~kf 
i - - I  

for k - -  1, 2 , . . . ,  n. 

that X, c Y and 

Using (2) and the fact that II gk lip = 1, we get 
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[ ~ aikf~iaf , ~ d(e_..~) for k --- 1 . . . .  , n. 
i-~ 1 - t  

If  e is small enough, we have that 

m 

g#, "~ ~ aikfil.t,. 
i - - I  

Then, for "most" of  the j = 1 , . . . ,  m and k 1 , . . . ,  n; askfJiA., is a "good" 

approximation ofgkia,. Since Igl --> r# in a set of  big measure, 

P[o9 ~A s : sgn gk(09) @ sgn ask sgn fs(co)] (sgn 0 = 1) 

is a "reasonable" estimate of  the measure of  the set of  all 09 ~Aj such that gk(09) 
'iS "not close" to ajkfs(oJ). (Notice that ifgk = rk, the kth Rademacher function, 

then sgn gk(o~) # sgn ajk sgn fs(aJ) implies Igk(og) -- ask~(09)l ----> 1.) 
The quantity we want to estimate is 

q(n) = - Plw EAj : sgn gk(og) @ sgn ajk sgn fs(co)] . 
#1 k - I  S - I  

It represents the average of the measure of  the sets where gk is "not close" to 

Zr'-i aikf, l~,. 
The idea of the proof is that, on the one hand, this quantity must be small 

since gk "~ Zr-~ aikf~lA,, and, on the other hand, i f m  is small relative to n, the 
independence of  sgn gk forces it to be large.. 

CLAIM 1. 

Set 

[ d(e) ]~ 
q(n) ~ + ~,. 

L##(1 - e)J 

r. .1,, b(e) ffi Lt/(1 - e)/ + ~ + ~ 

and choose ep > 0 so that b(ep) < ½. 

CLAIM 2. Let h = h(n) be the smallest number satisfying 

(")+ +(")]>1 
(3 )  2 n + 1 h = 

Then there exists N ~ Z  + such that for n > N, we have 
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h / n  < b(e,p) - ep/2. 

We postpone the p roof  of  Claims 1 and 2 and finish the p roo f  o f  Theorem 
1. I. Taking a crude est imate o f  (3), we o~)tain 

(;) 
(4)  1 < n - -  m .  

2/1 

By Stirling's formula,  there is a constant  A > 0 such that 

(n) 
h < A  m 

/ I  ~ 

where the function 

f ( x )  = 
(1 - x )  x- l  

I x 

satisfies f (0)  = 1, f(½) = 2 a n d f ' ( x )  > 0 for 0 < x  < 1/2. 

Since f is increasing, for n >_- N we have that 

(5) 
(;) 

2/1 

Set  r = 2 / f ( b ( e p ) )  (notice that  r > 1). 

Subst i tut ing  (5) in (4),  we  see that  m has  to  be  at least o f  order  r/1 to  

c o m p e n s a t e  (g)/2/1. That  is, we  can find N~ E Z  + s.t. 

m > r/1 for every n >_-- Nt. • 

REMARK. Ifgk ---- rk for every k, and we take ~/-- 1 and ? -- 0; we have that 
l ime-o b ( e )  = O. Then we get that 

lim inf  m t//1 > 2. 
/1 

This follows from the fact that lim~_0 r (e )  = 2. Thus  we recover the "fight 

order"  for the Rademacher  case. 

PROOF OF CLAIM 1. For  any k -- 1 . . . .  , n we have 
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i - I  i I 

Therefore, 

-~ rl t o  ~ B k  IAf = 
i - I  

where Bk = [ I gk I >---- ~ ] 

m 

=rlP Y, P[ to~Bk  rl Aj" Ig~(to)--ajkfj(to)l ~ rl] 
r - I  

Isr. J. Math. 

>= n ~ E ~'[to~Bk naj. sgn gk(to) ÷ sgn ajk sgn fj(to)] 
j - - I  

[" 1 >- ,1 ~ E e[to ~ar  : sgn gk( to ) ÷ sgn ajk sgn fj(to )] -- Pt  l g~ l < 7 ]  • 
j - - I  

m 

Y, P[to E A  r : sgn gt(to) ~ sgn ark sgn fj(to)] _< 
j -  t rip 

~ aikfilA~ 

I 1" < " + 3 ' ,  ffi tr/(1 - t ) J  

and taking the average on k, we finish the proof. 

+ e[ Igkl  < r / l  

[] 

PROOF OF CLAIM 2. We will identify [0,1] with { - 1, 1} N in such a way 

that  sgn gk = rk for k = 1 . . . . .  n. Since we will be interested in counting the 

number  o f  l ' s  of  elements o f  { - 1, 1 }N we will use the Bernoulli functions 

dk --- (rk + 1)/2. 
We want  to define a funt ion ~ : { - 1, 1 } N __. { _ 1, 1 } N that  will let us handle 

q(n) in an easier way (remember sgn 0 ffi 1). For  to EAj ,  let 

rk(~(to)) ffi -- sgn g~(to)sgn ar~ sgn [ ( to )  for k = 1 , . . . ,  n,  and  

rk(~(to)) = rk(to) for k = n + 1, n + 2 . . . . .  

We can easily check that  

P[to EAj  : sgn gk(to ) ÷ sgn ark sgn fj(to)] ---- f ,4, dk(~(to ))dto. 

Moreover,  given to1, to2 in A r such that  ~(to|) ffi ~(to2), then 

rk(toO = rk(to2) for k ffi n + 1, n + 2 , . . .  
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and (remember, sgn & = rk for k = 1 . . . . .  n) either 

or  

Therefore 

rk(~O,) = rk(o92) 

rk(og~) ffi -- rk(o92) 

for k -- 1 , . . . ,  n, 

f o r k =  1 . . . . .  n. 

card{o9 EAj" ~o(og) -- %} < 2 for all og0E { - 1, 1 }N. 

Adding all the pieces together, we get 

Ptog ~Aj : sgn gk(oJ) + sgn ajk sgn fj(o.O] f o' = dk(~o(og))do9 
j - I  

and card{o9 E { - 1, 1} N" ~(O9) = O90} < 2m for every OgoE{ - 1, 1} N. 

We want to estimate from below the quantity 

~ yo~ [k~_ dk(~O(og))] dog" 

We have that 

--~-~x/P[o9 k~-, dk(~(og)) fOl [k~_ dk(~(og))] do9 • = i ] .  

Let Si = [co" Y'~--I dk(og) = i ] .  Since card ~o-~(og) _-< 2m for every o9, 

2rtl 

S ~ - - U  
j - 0  

[co ESi : card ~o- l(oJ) •j]. 

Since ~ only changes the first n coordinates of co, it is 1-1 and measure 
preserving in each of "the 2 n basic dyadic intervals". Therefore 

[ ]2. 
P o9: dk(q~(o9))ffi i ffi Y. jP[O9~S~: card~o-I(m)=j] 

k - I  j - I  

2m 
< 2m Y. P[OgESi: card~-l(co)----j] 

j - I  

(7) 
2 n <-_ 2mP(S,) = 2m ~ , 
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and we have equality only if  card q~-t(oJ)= 2m a.e. in S~. The worst case 

occurs when the image of  ~ is "concentrated" where there are few l's. That is 

(6) 

> -  + .... + ~  
n 2m 

(h  - 1) 

t l  2m (h - 1 
2" 

where h is the mininum number satisfying 

~; [(;)+ ... +(;)]~ 1 

and Pn is chosen so that 

+ 

n n ~m ~"[(on)+ " + ( ~ - , )  + ~" (~)  ] ; ' 

m 

n 2m p. 

for k = 1 , . . . ,  c n .  

Take 0 < a < 1 and let c = [ah]/n, then 

( ; )+  "" + (Ia:~l) 
[ n ]) 

ah 

(~ ~"-°'r c ÷...] 
---<\7~-d t 1 + 1-~-~ 

which goes to zero as n --- ~ ([x] is the integer part of  x). Therefore 

~[(  n ) + . . . + ( n ) + , . ( ; ) l _ - i _ e ~ . ,  
2" [a2h] + 1 h - 1 

where e=(n)-* 0 as n ~ oo. Hence, (6) implies that 

- \ 1 - c~ \ c n /  

We will show that the right hand side of  (6) is essentially h/n ,  and this 

together with Claim 1 will finish the proof. 
For any 0 < c < ½ such that cn E Z  + we can easily check that 
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- d,(tp(og)) do9 = (1 - e..(n)). 
n , , n 

Claim (1) says (notice that q(n) --( l /n)Sd zr - ,  di(~(t.o))dto) 

n'/o'[ ] 2 d,(~o(w)) dto _-< b(ep) - ep. 

Therefore 

h <  b ( e o ) -  ep 

n = a2(1 - ea(n)) 

and an appropriate selection of 0 < a < 1 and N ~ Z + gives us that 

h 
- < b(ep) - ep/2 whenever n > N. • 
n 

3. An application 

We finish the paper with an application of Theorem 1.1 which was pointed 

out to us by G. Schechtman. 

PROPOSITION. Let 1 < p < 2. For every ~ > 0 there exist J = J(e, p) > 0 

and r = r(e, p ) >  1 such that for  every n ~ Z  + there is an n-dimensional 

subspace X,  c_ LF[0, 1] such that d (X , ,  1~) < e and mp(X~, e) > r". 

PROOF. Let e > 0  and n E Z  +. Take f ,  . . . .  f~ a sequence of  3-valued 
symmetric i.i.d, random variables such that II f, lip -- 1 and supp f small 
enough to insure that 

d(span{ f . . . . .  f~}, 1~) < 1 + e/2. 

Let r~ . . . . .  r, be a copy of  the Rademacher functions independent of  t he f ' s .  

Set gk -~ 17' fk  -[- rlrk where r/, q' are chosen so that [[ gk H p = 1 and r / =  ~/(e)> 0 
small enough to have 

d(x , l;) < 1 + 

where X~ = span{gl . . . . .  g~ }. 

The result follows easily from Theorem 1.1. • 

REr, IARK. A weaker form is true also for 2 < p < oo. Let X~ = span{rk}r"_ ~. 

As in Remark 12 of [JS] we can find II, such that X~_  I " ._  Lp with 

d(Y,,, ltp i'~ Y.) < K, and dim Yn < Kpn p~2 (Kp is a constant depending only on p). 
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Since mp(Xn, e) > r" then we have that mp(Yn, e) >-_ r" > r0(dim y~)2~ where 

r0 = r0(e, p) > 1. 
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