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ABSTRACT
We show that for | < p <o, p #2,if e > 0issmall enoughand X < L, is the
span of n independent Rademacher functions or # independent Gaussian
random variables, then any superspace Y of X satisfyingd(Y, L)) <1 + ¢has
dimension larger than 7", where r = r(g, p)> 1.

1. Introduction

In this paper we investigate a quantitative aspect of the local &£, - structure of
L,. The problem we consider is:

() Given a subspace X of L,, dim X = n, and & > 0, estimate the smallest
m = m,(X, &) such that there is a subspace Y of L, with X C Yand d(Y, [J’) =
1 + &. In particular, estimate m,(n, &) = sup{m,(X, &) : dim X = n}.

The concept was introduced by Pelczynski and Rosenthal [PR], who proved
that m,(n, &) is finite. In the same paper there is an argument, due to Kwapien,
that m,(n, €) is of order no larger than (n/e)" for some constant C. More
precise estimates were given by Figiel, Johnson and Schechtman [FJS], who
proved that “exponential of n” is the right order of m_(n, ¢) and for “natural”
n-dimensional Euclidean subspaces X of L,, m,(X, &) = r", wherer =r(g)>1
is independent of n and ¢ > 0 is arbitrary.

In the present paper we prove that if ¢ > 0 is small enough, and X is the
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subspace of L, spanned by n independent Rademacher functions or by »
independent Gaussian random variables, then m,(X,¢e)=r" where r =
r(e, p) > 1. More generally.

THEOREM 1.1. Let 1=p<aoc, p#2. For every n>0 and 0=y <}
there exists &, =¢,(n,y, p)>0 such that if X, =span(g,,...,g8,} where
& ll,=1,Pligil <nl=ypfori=1,2,..., nandthesgn g’s are independent
identically distributed (i.i.d.) random variables taking values 1 and — 1 with
probability }; and 0 <e <e,, then we can find r =r(e, n,y, p)> 1 and such
that m,(X,,e)=r".

REMARKS. (1) Theorem 1.1 is not true for arbitrarily large e > 0and p > 1.
Johnson and Schechtman proved in [JS] that for ¢ large enough and for g;
independent random variables, m,(X,,¢) satisfies a polynomial upper
estimate. It would be interesting to see if lim,_., &, = co.

(2) We can eliminate the restriction P[g; =0]=0 for i=1,...,n of
Theorem 1.1 by requiring: P[|g;| <n]<7y <} (instead of y<4%) for
i=1,...,nandg/’s are independent symmetric random variables. The proof
goes essentially the same way.

If the g;’s are independent symmetric random variables, we can use Kanter’s
inequality (see [AG] p. 112),

3
k 2
(*) P[ 2 gl|<n]-“§ k 12
(1+ 2 Pigizn)
i=]
to prove:

COROLLARY 1.2. Let 1=p<co,p#2. Forevery n>0and 0=y<1
there exists &, = g,(n, v, p) > O such that if X, = span{ f,, . . ., f,} where thef’s
are normalized independent symmetric random variables satisfying
Pllfl<nl=y fori=12,...,n; and 0<e<g,, then we can find r =
r(e, n,y, p)> 1 such that m,(X,, &) Z r".

ProOF. Take k (independent of n) so that the right hand side of (*) is less
than §. Let

ik
X

j=ti—k—1

ik
8= P b/

J=(i—=Dk—1

, di=1,...,[n/k] and %' =nlk.
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Then span {g; }/"/X] satisfies the hypothesis of Remark 2 and the proof follows.
|

Theorem 1.1 answers a question raised in [FJS], and gives a variety of
subspaces of L, for which m, (X, &) satisfies an “exponential lower bound”. The
remaining main problem is to see it there is a similar exponential behavior for
the uniform approximation property (or uniform projection approximation
property) for L,, 1 < p # 2 < co. It was shown in [FJS] that this is the case for
p=1

It also remains open whether m,(n, &) admits an exponential upper esti-
mate; or, at least, when X, is the span of # i.i.d. symmetric random variables.
Figiel [F] proved that this is correct if X, is the span of » i.i.d. Gaussian
random variables and p = 1.

2. Proof of Theorem 1.1

The main tool for the proof is:

THEOREM 2.1 (Dor-Schechtman) [D}, [S]. Let 1 = p <o, p #2. There
exists a function d(e) such that d(¢)—~0ase —0and, iff,, . . ., f,, are functions
in L,[0, 11 which satisfy

m I/p m m I/p
(1) (1—6)(2 Ia,-l”) = X af é(1+s)(2 la,-l")
i=1 i=1 P i=]
Jor all scalars a, . . ., a,,; then there exists a partition A,, . . . , A,, of [0, 1] such
that
m m p
@ 5 aie| sao (8 1ar)”.
i=1 14 =1

PrRoOOF OoF THEOREM 1.1. Take Y CL,[0,1] such that X, CY and
d(Y, ') =1 + ¢, where m = m,(X,, €). Then we can find:
() fi, ..., fnin Y satisfying (1),
(i1) A partition 4,,. .., A4,, of [0, 1] satisfying (2), and
(iii) some constants a; such that

m
&= Y apf; fork=1,2,...,n.

i=1

Using (2) and the fact that || g ||, = 1, we get
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§£-(f—)— fork=1,...,n.
p l1—¢

m
2 awli 14f
i=1
If ¢ is small enough, we have that
m
&= Y awfia-
i=1

Then, for “most” of the j=1,...,mand k=1,...,n; a; f;, is a “good”
approximation of g,.. Since |g| = 7 in a set of big measure,

Plw€4;: sgn g (w) # sgn a; sgn fi(w)]  (sgn0=1)

is a “reasonable” estimate of the measure of the set of all w € 4; such that g,(w)
s “not close” to a;, f;(w). (Notice that if g, = r,, the kth Rademacher function,
then sgn g,(w) # sgn a; sgn f;(w) implies | g (w) — a; fi(w)] = 1.)

The quantity we want to estimate is

g(n)= 2 [% Plw€E€A4;: sgn g, (w) # sgn a,-ksgnﬁ(w)]]-

1
N k=1Llj=1
It represents the average of the measure of the sets where g; is “not close” to
I aufiia-
The idea of the proof is that, on the one hand, this quantity must be small

since g, =~ 2/, ay f;,4,, and, on the other hand, if m is small relative to n, the
independence of sgn g, forces it to be large.

CLAamM 1.
d(e) ]p
<
am= [n(l ~¢)
Set
_[_4©) ]"
b(e) [_—n(l—a) +y+e¢

and choose ¢, > 0 so that b(e,) <.

CLAIM 2. Let & = h(n) be the smallest number satisfying

o () )

Then there exists NEZ* such that for n = N, we have
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hin = b(g,) —¢,/2.

We postpone the proof of Claims 1 and 2 and finish the proof of Theorem
1.1. Taking a crude estimate of (3), we optain

4) 1=n m.

By Stirling’s formula, there is a constant 4 > 0 such that

(1)

<4 [f(h/n)]" ,
2n 2
where the function
1 _ x—1
fooy ==X
X

satisfies f(0)=1, f(}) =2 and f(x)>0for 0 <x < 1/2.
Since f is increasing, for n = N we have that

(5) ( 71 ) oy [f(b(s,,) - a,,/z)]n |

2" 2

Set r = 2/f(b(e,)) (notice that r > 1).
Substituting (5) in (4), we see that m has to be at least of order r* to
compensate (f)/2". That is, we can find N,EZ" s.t.

mzr" foreveryn=N,. |

REMARK. If g, =r, for every k, and we take n = 1 and y = 0; we have that
lim,_.q b(g) = 0. Then we get that

liminf m'» = 2,
n

This follows from the fact that lim,_, 7(¢) = 2. Thus we recover the “right
order” for the Rademacher case.

ProOOF OF CLAIM 1. Forany k=1,..., n we have
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-

m
2 Ay fi)at
=l

m
) aikﬁ[Af

m
) aikﬂmf
i=1

p
;r]PP[
r

= r]”P[w €B,:

;n] where B, = [1g] 2 1]

=1 § PlwEB, N 4;: |8(@) - ax (@) Z 1]

=1

Z 7’ ¥ PlwEB; N 4;: sgn gi(w) # sgn a; sgn f(w)]

Jj=1

z n"[ Y PlwE€4;: sgn gi(w) # sgn g sgn fi(w)] — P& | < n]] .
j=1

Therefore,

p

m
> aikﬁlAf

1

S Plw €4, sgn g() # sgn ay sgn f()] < 2 + Pllgel <n]

j=1
é[_sf_(i]"ﬂ,
n(l—¢g)

and taking the average on k, we finish the proof. [ |

PrOOF OF CLAIM 2. We will identify [0,1] with { — 1, 1}™ in such a way
thatsgng, =r, for k=1,..., n. Since we will be interested in counting the
number of 1’s of elements of { — 1, 1} we will use the Bernoulli functions
de = (r + 1)/2.

We want to define a funtion ¢: { — 1, 1}¥— { — 1, 1}" that will let us handle
g(n) in an easier way (remember sgn 0 = 1). For w €4,, let

n(p(w)) = — sgn gi(w)sgn a; sgn fi(w)  fork=1,...,n, and
ri(p(w)) = r(w) fork=n+1,n+2,....

We can easily check that

Pl E4;: sgn g(w) # sgn ay, sgn f()] = f d(p()do.

Moreover, given w,, w, in 4; such that ¢(w,) = ¢(w,), then

n(w)=r(wy) fork=n+1n+2,...
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and (remember, sgn g, =r, fork =1,..., n) either

r(w)=r(w,) fork=1,...,n,
or
rn(w)=—nl(w) fork=1,...,n.
Therefore

card{w€4;: p(w)=wp} =2 forall w€{ -1, 1}N.

Adding all the pieces together, we get

§ Plw €4, sgn gi(w) # sgn a; sgn f(w)] = fo l di(p(w))dw

j=1

and card{w €{ — 1, 1}V: p(w) = wy} = 2m for every w,€{ — 1, 1}N,
We want to estimate from below the quantity

1 1 n
; fo [E, dk«p(w»] do>.

We have that

fol LE dk“"‘“’”} do = 3 iP[w : 33 dy(p(w)) = z] .

i=1

Let S, =[w: Z}., di(w)=1i]. Since card ¢ ~(w) = 2m for every w,

m
Si= U [wES,:card ¢~ Y(w) =]].

j=0

Since ¢ only changes the first n coordinates of w, it is 1-1 and measure
preserving in each of “the 2" basic dyadic intervals”. Therefore

P[w: i dk(¢(w))=l]= zij[wES,-:card(o"(w)=j]
k=1

j=1

2m
=2m ¥ Plw€ES;:card ¢ (w)=/J]

()

=2mP(S))=2m —2— s
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and we have equality only if card ¢~ '(w)=2m a.e. in S;. The worst case
occurs when the image of ¢ is “concentrated” where there are few 1’s. That is

= 7] £ doteon]do

©
()| +..v=n) (1)1l ().

Y n 2m Y n{ 2mp,

=

X |O

2m

where 4 is the mininum number satisfying

(o) +(0)]

and p, is chosen so that

(ool o

We will show that the right hand side of (6) is essentially 4/n, and this
together with Claim 1 will finish the proof.
For any 0 < ¢ < } such that cn EZ* we can easily check that

k
( " )§< ¢ )(n) fork=1,...,cn.
cn —k, 1- cn

Take 0 <a <1 and let ¢ = [ah])/n, then

v

1

(g)+"'+<[a’:h1)< c \or e L
PRSI

which goes to zero as n — oo ([x] is the integer part of x). Therefore

%[([dzhr]l+ 1>+ +<hfl)+p"(2)]= e

where ¢,(n)— 0 as n — 0. Hence, (6) implies that
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1 Jlath) o
- L [Zd(w(w))]dw (1~ e,(n)).

i=1
Claim (1) says (notice that g(n) = (1/n) |3 =/, di(p(w))dw)

1 f ’[2 d,.(q;(w))] dow < b(s,) —¢,.
nvo

i=1

Therefore

A

fz_ b(g,) —¢,
n - a¥1—e(n))

and an appropriate selection of 0 <a <1 and NEZ gives us that

h =b(g,)—¢,/2  whenevern = N. n
n

3. An application

We finish the paper with an application of Theorem 1.1 which was pointed
out to us by G. Schechtman.

ProrosiTioN. Let | = p <2, For every ¢ >0 there exist 6 =06(¢, p)>0
and r=r(e, p)> 1 such that for every n€Z"* there is an n-dimensional
subspace X, C L,[0, 1] such that d(X,, I}) < e and m,(X,,e) = r".

Proor. Let ¢>0 and n€Z*. Take f,..., f, a sequence of 3-valued
symmetric i.i.d. random variables such that | f; ||, =1 and supp f; small
enough to insure that

d(span{ fi,..., f,}, 1) =1+e¢/2.

Letr,.. r,, be a copy of the Rademacher functions independent of the f’s.
Set g, = 1’ + nr, where n, n’ are chosen so that || g ||, = 1and n = n(e)>0
small enough to have

dX,,)=1+e¢

where X, =span{g,...,&,}.
The result follows easily from Theorem 1.1. |

REMARK. A weaker form is true also for 2 < p < w. Let X, = span{r; }/-,.
As in Remark 12 of [JS] we can find Y, such that X, C Y, C L, with
d(Y,, [i"") = K,and dim Y, = K,n*” (K, is a constant depending only on p).
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Since m,(X,, &) = r" then we have that m,(Y,, &) Z r* Z r(dim Y,)*? where
ro = r0(8, p)> l.
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